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● planners

○ interested in “learning” for planning

● machine learners

○ interested in learning for “planning”

● knowledge representationers

○ interested in inductive reasoning in “learning for planning”

Who is this tutorial for?

Learning for Generalised Planning: Theory and Practice LAAS-CNRSDillon Z. Chen Learning for Automated Planning: Theory and Practice LAAS-CNRSDillon Z. Chen Learning for Automated Planning: Theory and Practice LAAS-CNRSDillon Z. Chen Learning Value Functions and Policies for Automated Planning: Theory and Practice LAAS-CNRSDillon Z. Chen Learning Generalised Value Functions and Policies for Automated Planning: Theory and Practice LAAS-CNRSDillon Z. Chen Learning for Automated Planning: Theory and Practice LAAS-CNRSDillon Z. Chen Preliminaries LearnPlan Tutorial @ ICAPS’25Chen, D.; Trevizan, F.; Thiébaux, S.



Assumed knowledge

● planning:

○ find a course of actions (i.e. a plan) or policy to achieve a goal

○ lifted representations, e.g. PDDL

● machine learning:

○ make predictions based on data and experience

○ training vs. testing pipelines

Learning for Automated Planning: Theory and Practice LAAS-CNRSDillon Z. Chen Preliminaries LearnPlan Tutorial @ ICAPS’25Chen, D.; Trevizan, F.; Thiébaux, S.
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Introduction



Learning for (Generalised) Planning is a rapidly growing topic

● learn knowledge from easy-to-solve, small problems

● generalise to problems with unseen initial states/goals, and greater number of objects

Number of papers grouped by topic at ICAPS 2003–2024

Motivation
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Learning for Generalised Planning?

● Q: Can we leverage learning research for planning?

○ A: 

● Q: Does learning for planning work?

○ A: 

● Q: Is there still need for domain-independent planning research?

○ A: 
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What do we mean in this talk by Learning for Planning?

Learn a model of the world Learn to solve the model

planning model solver solutionplanning problem
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What do we want with Learning for Generalised Planning?

“learning generalised plans from example problems with the aim of 

amortising the cost of learning by solving problems more efficiently (faster) and effectively 

(higher quality solutions) than domain-independent planners”

Learning for Automated Planning: Theory and Practice LAAS-CNRSDillon Z. Chen Introduction LearnPlan Tutorial @ ICAPS’25Chen, D.; Trevizan, F.; Thiébaux, S.



Preliminaries: Lifted Planning Problem

A lifted planning domain D is a tuple 〈P, A〉

● P = predicates; e.g. (at ?obj ?loc)

● A = action schemata; e.g. (move ?obj ?loc_from ?loc_to)

A lifted planning problem is a tuple 〈D, O, s0, g〉

● O = objects; e.g. dog, kitchen

● s0 = initial state; e.g. (at dog bedroom), (hungry dog)

● g = goal condition; e.g. (happy dog)

Learning approaches covered in this tutorial can support more expressive planning models, e.g. numeric, probabilistic, temporal, partially observable etc.
The presentation here is done for simplicity.
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(2.1) The L4P problem setup



Learning for Generalised Planning (L4P) Setup

Learning for Automated Planning: Theory and Practice LAAS-CNRSDillon Z. Chen L4P Problem Setup LearnPlan Tutorial @ ICAPS’25Chen, D.; Trevizan, F.; Thiébaux, S.



L4P Setup – Inputs
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L4P Setup – Step 1: Learning

Performed once
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L4P Setup – Step 2: Planning

Performed 
multiple times
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L4P Setup
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Training vs Testing distributions

Define “f(x) = maximum number of objects and plan length of problems in x”

1. Interpolation; in-distribution learning:

f(             ) ≤ f( )

2. Extrapolation; out-of-distribution learning:

f(             ) > f( )
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Define “f(x) = maximum number of objects and plan length of problems in x”

1. Interpolation: f(             ) ≤ f(              )

○ for intractable domains

○ e.g. Sokoban, Rubik’s cube; optimal planning

2. Extrapolation: f(             ) > f(              )

○ for tractable domains

○ e.g. package transportation, Blocksworld

Training vs Testing distributions

Learning for Automated Planning: Theory and Practice LAAS-CNRSDillon Z. Chen L4P Problem Setup LearnPlan Tutorial @ ICAPS’25Chen, D.; Trevizan, F.; Thiébaux, S.



Training

Testing: initial states and goals not seen before in training

GP interpolation example; Sokoban
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Training

Testing: more blocks than seen in training problems

GP extrapolation example; Blocksworld
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(2.1) The GP problem setup – Summary

1. Interpolation; in-distribution learning: f(             ) ≤ f(             ) 2. Extrapolation; out-of-distribution learning: f(             ) > f(             )
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(2.2) Methodologies for solving GP problems



Trivial example: domain-independent planner with no learning

Learning for Automated Planning: Theory and Practice LAAS-CNRSDillon Z. Chen Methodologies LearnPlan Tutorial @ ICAPS’25Chen, D.; Trevizan, F.; Thiébaux, S.



(2.2.1) Forms of learned knowledge



Learned knowledge can be taxonomised in one of 3 main spaces:

1. action-space; e.g. policies π(a | s, g), finite state automata

2. state-space; e.g. heuristic h(s), LTL constraints

3. problem-space; e.g. problem transformation

~ a method can be a combination of one or more spaces

GP Knowledge Taxonomy

action-space

state-space problem-space
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Action-space methods: Policies
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● A policy, usually denoted π(a | s), is a mapping from states to distributions of actions

● Learning

○ supervised: labelled optimal actions

○ reinforcement: improve based on signal

● Planning

○ usually rollout by sampling or choosing the argmax from π(a | s)

○ repeat until goal is reached or a time or rollout limit is reached

● Analogous to policy gradient methods in RL, e.g. DDPG, TRPO, PPO, etc.

Action-space methods: Policies
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Action-space example: ASNets

Sam Toyer, Sylvie Thiébaux, Felipe W. Trevizan, Lexing Xie: ASNets: Deep Learning for Generalised Planning. J. Artif. Intell. Res. 68: 1-68 (2020)
Sam Toyer, Felipe W. Trevizan, Sylvie Thiébaux, Lexing Xie: Action Schema Networks: Generalised Policies With Deep Learning. AAAI 2018: 6294-6301
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● Input: planning state, goal condition, and action applicability

● Output: stochastic policy (distribution of actions)

● Backbone: Graph Neural Network

ASNets – architecture
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● Reinforcement-learning style; Repeat the following:

a) sample states by rolling out parameterised policy πθ

b) sample states by executing a teacher planner

c) compute best actions for all sampled states via a teacher planner

d) update πθ based on best actions; loss = binary cross entropy

● ~ similar to RL: explore (a) and exploit (b), with reward signals computed by a teacher 

planner (c) for improving the incumbent policy (d)

ASNets – learning
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1. Set s ← the initial state of the problem

2. Repeat the following:

a. return plan to s if goal is reached

b. sample an action a or select action with highest probability from πθ(a | s)

c. s ← apply action a at s

ASNets – planning
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● Extrapolates to testing problems larger than training problems

● Sound (returned solutions are correct)

● Not complete (if a solution exists, it is found)

● Plans on grounded representations

● Originally designed for probabilistic planning

● Extended to numeric planning [Wang and Thiébaux, ICAPS’24]

ASNets – key attributes

Ryan Xiao Wang, Sylvie Thiébaux: Learning Generalised Policies for Numeric Planning. ICAPS 2024: 633-642
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● First deep learning architecture for learning generalised policies (2018)

● Blocksworld

a) 25 training problems with 8-10 blocks

b) solves all testing problems with 35-50 blocks

● Outperforms (probabilistic) planners on various domains

● Sparse regularisation loss for interpretable models

ASNets – notable achievements
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State-space methods: Heuristics
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State-space methods: Heuristics

● A heuristic is a real-valued function h: S → R estimating cost to go to a goal

● Learning

○ supervised: labelled optimal actions

○ reinforcement: improve based on signal

● Planning

○ combine with heuristic search, e.g. GBFS; but NOT A* as learned heuristics not guaranteed to be optimal

○ for greedy policies: select action whose successor has lowest h value

● Analogous to value function approximation in RL, e.g. Q-Learning, TD(ƛ), DQN, etc.
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State-space example: (WL-)GOOSE

Dillon Z. Chen, Felipe W. Trevizan, Sylvie Thiébaux: Return to Tradition: Learning Reliable Heuristics with Classical Machine Learning. ICAPS 2024: 68-76
Dillon Z. Chen, Sylvie Thiébaux, Felipe W. Trevizan: Learning Domain-Independent Heuristics for Grounded and Lifted Planning. AAAI 2024: 20078-20086
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● Input: planning state and goal condition

● Output: scalar heuristic value

● Backbone: Weisfeiler-Leman Graph Kernel

GOOSE – architecture
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● Supervised learning

● Generate optimal plans from training data

● Optimise weights subject to predicting optimal

a) h* values; loss = mean squared error

b) state rankings; loss = cf. [Garrett et al., IJCAI’16; Hao et al., IJCAI’24]

GOOSE – learning

Caelan Reed Garrett, Leslie Pack Kaelbling, Tomás Lozano-Pérez: Learning to Rank for Synthesizing Planning Heuristics. IJCAI 2016: 3089-3095
Mingyu Hao, Felipe W. Trevizan, Sylvie Thiébaux, Patrick Ferber, Jörg Hoffmann: Guiding GBFS through Learned Pairwise Rankings. IJCAI 2024: 6724-6732
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● Plug into a heuristic search algorithm

○ e.g. GBFS

GOOSE – planning
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● Extrapolates to testing problems larger than training problems

● Sound (returned solutions are correct)

● Complete (if a solution exists, it is found)

● Plans on lifted representations

● Extended to probabilistic planning [Zhang and Trevizan, Tech. Rep. 24]

● Extended to numeric planning [Chen and Thiébaux, NeurIPS’24]

GOOSE – key attributes

Dillon Z. Chen, Sylvie Thiébaux: Graph Learning for Numeric Planning. NeurIPS 2024
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● First learning approach to outperform domain-independent heuristics on competition 

IPC benchmarks with hundreds of objects (2024)

● Orders of magnitude more efficient than neural networks for learning and planning

● Maximally expressive compared to graph neural network counterparts

● Symbolic linear model with interpretable features

GOOSE – notable achievements
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Problem-space methods: Problem transformation
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Problem-space methods: Problem transformation

● converts Prob = 〈P, O, A, s0, G〉 into Prob’ = 〈P’, O’, A’, s0’, G’〉, ideally such that a plan 

for Prob’ can be transformed back to a plan for Prob

● advantage: scales with the improvement of planners over time
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Problem-space example: PLOI

Tom Silver, Rohan Chitnis, Aidan Curtis, Joshua B. Tenenbaum, Tomás Lozano-Pérez, Leslie Pack Kaelbling: Planning with Learned Object Importance in Large Problem Instances using 
Graph Neural Networks. AAAI 2021: 11962-11971

Learning for Automated Planning: Theory and Practice LAAS-CNRSDillon Z. Chen Forms of Learned Knowledge LearnPlan Tutorial @ ICAPS’25Chen, D.; Trevizan, F.; Thiébaux, S.



● Input: planning state and goal condition

● Output: scalar scores in range [0, 1] for each object in the problem

● Backbone: Graph Neural Network

PLOI – architecture

Learning for Automated Planning: Theory and Practice LAAS-CNRSDillon Z. Chen Forms of Learned Knowledge LearnPlan Tutorial @ ICAPS’25Chen, D.; Trevizan, F.; Thiébaux, S.



● Supervised learning

● loss = binary cross entropy

● Greedily approximate ground truth labels of relevant objects in training data:

a) start with full object set O

b) incrementally remove some object from O until removing an object causes the 

problem to be unsolvable

PLOI – learning
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1. score objects in a problem; select threshold value Ɣ from the range (0, 1)

2. for N = 1, 2, 3, … until the problem is solved:

a. keep the set of objects with score greater than ƔN

b. try to solve the problem with the subset of objects

PLOI – planning
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● Extrapolates to testing problems larger than training problems

● Sound (returned solutions are correct)

● Complete (if a solution exists, it is found)

● Learns on lifted representations

● Can be extended to probabilistic and numeric planning

PLOI – key attributes
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● Always matches or improves upon base planner in experiments

● Extended to handle continuous task and motion planning problems

● Learns a problem transformation ⇒ can be used with any backend planner

PLOI – notable achievements
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Learned knowledge can be taxonomised in one of 3 main spaces:

1. action-space; e.g. policies

2. state-space; e.g. heuristic

3. problem-space; e.g. problem transformation

~ a method can be a combination of one or more spaces

(2.2.1) Forms of Learned Knowledge – Summary

action-space

state-space problem-space
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(2.2.2) Tools for learning knowledge



Diverse body of approaches for synthesising generalised plans

● graph learning

● abstraction

● constraint programming

● program search

● goal regression

● language models

Approaches for synthesising generalised plans

Srivastava et al., AAAI’11

Francès et al., AAAI’21

Toyer et al., AAAI’18; JAIR’20

Segovia-Aguas et al., ICAPS’21; AIJ’24

Learning for Automated Planning: Theory and Practice LAAS-CNRSDillon Z. Chen Tools for Learning Knowledge LearnPlan Tutorial @ ICAPS’25Chen, D.; Trevizan, F.; Thiébaux, S.



e.g. ASNets, PLOI, GOOSE in Sec. 2.2.1. 

Graph Learning

representation
● domain information: 

predicates, schema
● problem information: 

objects, state, goals

architecture
● graph neural networks
● graph kernels
● transformers (GNNs + 

positional encodings)

optimisation
● imitation learning, 

supervised, unsupervised, 
reinforcement learning

● MSE, CE, ranking
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Abstraction

● e.g. place all the dirty objects on the floor into the laundry basket

How to synthesise a policy across instances?

Day 1 Day 10
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● many different instances = many different transitions, … what can we do?

at(spot,bedroom)
in(sock1,bedroom)

at(spot,bedroom)
holding(spot,sock1)

pickup(spot, sock1, bedroom)

at(spot,bedroom)
in(sock1,bedroom) 
in(sock2,bedroom) 
in(sock3,bedroom)

at(spot,bedroom)
in(sock1,bedroom) 

holding(spot,sock2) 
in(sock3,bedroom)

pickup(spot, sock2, bedroom)

pickup(spot, sock1, bedroom) pickup(spot, sock3, bedroom)

… …
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● we can abstract equivalent objects away:

Abstraction

at(spot,bedroom)
|in(sock,bedroom)| = 1

|holding(spot,sock)| = 0

at(spot,bedroom)
|in(sock,bedroom)| = 0

|holding(spot,sock)| = 1

pickup(spot, sock, bedroom)

at(spot,bedroom)
|in(sock,bedroom)| = 3

|holding(spot,sock)| = 0

at(spot,bedroom)
|in(sock,bedroom)| = 2

|holding(spot,sock)| = 1

pickup(spot, sock, bedroom)

at(spot,bedroom)
|in(sock,bedroom)| = 1000
|holding(spot,sock)| = 90

at(spot,bedroom)
|in(sock,bedroom)| = 999
|holding(spot,sock)| = 91

pickup(spot, sock, bedroom)
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● we can even abstract numbers away via qualitative states [Srivastava et al., AAAI’11]

Abstraction

Siddharth Srivastava, Shlomo Zilberstein, Neil Immerman, Hector Geffner: Qualitative Numeric Planning. AAAI 2011

at(spot,bedroom)
|in(sock,bedroom)| > 0

|holding(spot,sock)| > 0

at(spot,bedroom)
|in(sock,bedroom)| = 0

|holding(spot,sock)| > 0

pickup(spot, sock, bedroom)
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Abstraction

at(spot,bedroom)
|in(sock,bedroom)| > 0

|holding(spot,sock)| > 0

at(spot,bedroom)
|in(sock,bedroom)| = 0

|holding(spot,sock)| > 0

pickup(spot, sock, bedroom)

while ∃socks in bedroom:
    choose sock
    move to sock
    pickup sock

find an abstraction
● synthesise a single 

nondeterministic problem 
representing a family of 
problems

solve the abstraction
● synthesise a generalised 

plan for the original family 
of problems from solving 
the abstraction
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● Illanes and McIlraith, AAAI’19 

○ bag equivalent objects

[Riddle et al., HSDIP’16, Fuentetaja and Rosa, AI Comm. 2016]

● Bonet et al., AAAI’19

○ MaxSAT over description logic features for planning 

[Martín and Geffner, Appl. Intell. 2004]

Finding Abstractions

while ∃socks in 
bedroom:
    choose sock
    move to sock
    pickup sock

at(spot,bedroom)

|in(sock,bedroom)| > 0

|holding(spot,sock)| > 0

at(spot,bedroom)

|in(sock,bedroom)| = 0

|holding(spot,sock)| > 0

pickup(spot, sock, bedroom)
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● ‘generate-and-test’

○ iteratively generate policies and 
test for termination

○ generate: e.g. anytime FOND solver [Illanes and McIlraith, AAAI‘19; Zeng et al., IJCAI’22]

○ test: e.g. Sieve algorithm [Srivastava et al., AAAI’11; Srivastava, JAIR’23]

● compilation approach

○ compile to FOND(+) restricted to terminating policies and solve

○ FOND: [Bonet and Geffner, JAIR’20]; FOND+: [Rodriguez et al., JAIR’22]

Solving Abstractions

while ∃socks in 
bedroom:
    choose sock
    move to sock
    pickup sock

at(spot,bedroom)

|in(sock,bedroom)| > 0

|holding(spot,sock)| > 0

at(spot,bedroom)

|in(sock,bedroom)| = 0

|holding(spot,sock)| > 0

pickup(spot, sock, bedroom)
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● finding and solving abstractions ‘end-to-end’

● synthesise generalised policies with SAT [Francès et al., AAAI’21]

● synthesise generalised policy sketches with ASP [Drexler et al, ICAPS’22]

Constraint Programming

Learning for Automated Planning: Theory and Practice LAAS-CNRSDillon Z. Chen Tools for Learning Knowledge LearnPlan Tutorial @ ICAPS’25Chen, D.; Trevizan, F.; Thiébaux, S.
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● directly search over space of programs/generalised plans

● compile program search as planning problem: [Segovia-Aguas et al., AIJ’19]

● Best-First Generalised Planning: GP as heuristic search [Segovia-Aguas et al., JAIR’24]

● programs consist of 

○ planning actions

○ goto instructions

○ termination instructions

Program Search

Learning for Automated Planning: Theory and Practice LAAS-CNRSDillon Z. Chen Tools for Learning Knowledge LearnPlan Tutorial @ ICAPS’25Chen, D.; Trevizan, F.; Thiébaux, S.

Segovia-Aguas et al., JAIR’24



● goal regression determines minimal and sufficient condition for achieving a goal under 

a sequence of actions

● used to synthesise generalised, first-order policies by

○ Gretton and Thiébaux, UAI’04

○ Illanes and McIlraith, AAAI’19

○ Chen et al., AAAI’26

Goal Regression

Learning for Automated Planning: Theory and Practice LAAS-CNRSDillon Z. Chen Tools for Learning Knowledge LearnPlan Tutorial @ ICAPS’25Chen, D.; Trevizan, F.; Thiébaux, S.



prompt for programs representing generalised plans

Language Models

Learning for Automated Planning: Theory and Practice LAAS-CNRSDillon Z. Chen Tools for Learning Knowledge LearnPlan Tutorial @ ICAPS’25Chen, D.; Trevizan, F.; Thiébaux, S.

standalone solvers
Silver et al., AAAI’24

generalised heuristic functions 
Tuisov et al., 2025

figure from Corrêa et al., NeurIPS’25

generalised action policies
Chen et al., EWRL’25



(2.3) Evaluating L4P Methodologies



Theoretical and Empirical Measures

● Theory

○ expressivity

○ generalisability

○ complexity and decidability

● Practice

○ training costs

○ planning costs

○ solution quality

Learning for Automated Planning: Theory and Practice LAAS-CNRSDillon Z. Chen Evaluating Approaches LearnPlan Tutorial @ ICAPS’25Chen, D.; Trevizan, F.; Thiébaux, S.



Theoretical Measures – Expressivity

● expressivity = range of functions or hypotheses a model can potentially learn

● ~ measures the best theoretical performance of a model 

● e.g. 

○ domain-dependent GNNs related to C2 logic [Stålberg et al., ICAPS’22]

○ domain-independent GNNs can express hmax, h
add [Chen et al., AAAI’24]

Learning for Automated Planning: Theory and Practice LAAS-CNRSDillon Z. Chen Evaluating Approaches LearnPlan Tutorial @ ICAPS’25Chen, D.; Trevizan, F.; Thiébaux, S.



Theoretical Measures – Generalisability

● generalisability = performance on unseen data

● ~ measures the estimated average performance of a model 

● see e.g. https://mlstory.org/generalization.html

○ Algorithmic stability 

○ Vapnik–Chervonenkis (VC) dimension

○ Rademacher complexity 

○ PAC learning

● almost no theory for generalised planning

Learning for Automated Planning: Theory and Practice LAAS-CNRSDillon Z. Chen Evaluating Approaches LearnPlan Tutorial @ ICAPS’25Chen, D.; Trevizan, F.; Thiébaux, S.

https://mlstory.org/generalization.html


Theoretical Measures – Complexity and Decidability

● theoretical computational resources required to synthesise a generalised plan 

● usually trade-off with expressivity

● e.g.

○ QNP (planning with loops with non-deterministic semantics) is decidable 

(EXPTIME-complete) [Srivastava et al., AAAI’11; Bonet and Geffner, JAIR’20]

○ planning with loops with deterministic semantics is undecidable [Srivastava et al., 

AAAI’15; Srivastava, JAIR’23]

Learning for Automated Planning: Theory and Practice LAAS-CNRSDillon Z. Chen Evaluating Approaches LearnPlan Tutorial @ ICAPS’25Chen, D.; Trevizan, F.; Thiébaux, S.



Empirical Measures

● Training Costs

○ resources for synthesising a generalised plan

● Planning Costs

○ resources for instantiating a generalised plan

● Solution Quality

○ quality (e.g. size) of a generalised plan, and of instantiated plans

Learning for Automated Planning: Theory and Practice LAAS-CNRSDillon Z. Chen Evaluating Approaches LearnPlan Tutorial @ ICAPS’25Chen, D.; Trevizan, F.; Thiébaux, S.



Benchmarks

● Various papers often introduce their own train and test splits

● IPC 2023 Learning Track introduced canonical splits 

https://github.com/ipc2023-learning/benchmarks

● Recall interpolation and extrapolation settings. Most L4P works focus on extrapolation

Learning for Automated Planning: Theory and Practice LAAS-CNRSDillon Z. Chen Evaluating Approaches LearnPlan Tutorial @ ICAPS’25Chen, D.; Trevizan, F.; Thiébaux, S.

1. Interpolation; in-distribution learning: f(             ) ≤ f(             ) 2. Extrapolation; out-of-distribution learning: f(             ) > f(             )

https://github.com/ipc2023-learning/benchmarks


https://github.com/DillonZChen/wlplan/blob/main/docs/source/tutorials/1
_introduction.ipynb

ICAPS 2025 Tutorial
Learning for Generalised Planning: Lab

Dillon Z. Chen    Felipe Trevizan    Sylvie Thiébaux

https://l4p-tutorial.github.io/



Motivation

Learning for (Generalised) Planning is a rapidly growing topic

● learn knowledge from easy-to-solve, small problems

● generalise to problems with unseen initial states/goals, and greater number of objects

Number of papers grouped by topic at ICAPS 2003–2024



Motivation

● plenty of open source planner systems and planning libraries

● few libraries specifically for learning for planning



WLPlan

C++ package with Python bindings that implements

1. Graph representations of planning tasks

2. Embeddings of planning tasks and graphs

3. Serialisation of models

pip install wlplan

https://dillonzchen.github.io/wlplan/



Graph representations of planning tasks

Python

g_generator = init_graph_generator(

    graph_representation="ilg", domain=domain

)

graphs = g_generator.to_graphs(dataset)

graph_generator::ILGGenerator g_generator = 

    graph_generator::ILGGenerator(domain);

std::vector<graph_generator::Graph> graphs =

   g_generator.to_graphs(dataset);

C++



Embeddings of planning tasks and graphs

Python

f_generator = init_feature_generator(

   feature_algorithm="wl", domain=domain

)

f_generator.collect(dataset)

X = f_generator.embed(dataset)

feature_generator::WLFeatures f_generator = 

    feature_generator::WLFeatures(domain);

...

std::vector<int> x = 

    f_generator.embed_state(state);

C++



Serialisation of models

Python

f_generator.save(

    filename=x,

    weights=predictor.get_weights(),

)

std::shared_ptr<feature_generator::Features>

  f_generator = load_feature_generator(model_file);

C++



    WLPlan Methodology and Configurations



WLPlan Methodology

Dillon Z. Chen, Felipe W. Trevizan, Sylvie Thiébaux: Return to Tradition: Learning Reliable Heuristics with Classical Machine Learning. ICAPS 2024: 68-76

Weisfeiler-Leman 
Graph kernel Iteratively refine node colours using 

neighbour information



Weisfeiler-Leman Graph Kernel

Figure from Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, Karsten M. Borgwardt: Weisfeiler-Lehman Graph Kernels. J. Mach. Learn. Res. 12: 2539-2561 (2011)



WLPlan Configurations

Graph Representation
ILG

PLOIG

Feature Generator

WL

iWL

2-LWL

2-KWL

Hash Function
Multiset

Set

Feature Pruner

None

MaxSat

iterMaxSat

iterMaxSat+freq

Iterations  1, 2, ...

{{ ... }} { ... }

Configurations trade off between expressivity, memory and speed



Graph Generator — Representation Options

g_generator = init_graph_generator(

    domain : Domain,

    graph_representation : str,

)

Graph representations of planning problems

ilg

ploig



Feature Generator — Algorithm Options

f_generator = init_feature_generator(

    domain : Domain,

    feature_algorithm : str,

    multiset_hash : bool,

    pruning : str,

    iterations : int,

)

WL or an extension for generating features

wl kwl2

lwl2 iwl



Feature Generator — Hash Function Options

f_generator = init_feature_generator(

    domain : Domain,

    feature_algorithm : str,

    multiset_hash : bool,

    pruning : str,

    iterations : int,

)

Collect neighbour colours via multiset vs. set

{ }



Feature Generator — Pruning Options

f_generator = init_feature_generator(

    domain : Domain,

    feature_algorithm : str,

    multiset_hash : bool,

    pruning : str,

    iterations : int,

)

Option to prune seemingly equivalent features



Feature Generator — Iteration Options

f_generator = init_feature_generator(

    domain : Domain,

    feature_algorithm : str,

    multiset_hash : bool,

    pruning : str,

    iterations : int,

)

Number of iterations to perform in WL



WLPlan Use Cases



Learning Heuristics

Learn a heuristic Employ the heuristic in search, 
e.g. Greedy Best First Search



Graph Neural Network Pipeline

https://dillonzchen.github.io/wlplan/tutorials/3_gnns.html

https://dillonzchen.github.io/wlplan/tutorials/3_gnns.html


Visualising Planning Domains

perform dimensionality Reduction 
(e.g. PCA, t-SNE)



Expressivity Testing



Synthesising Novelty Heuristics

Lipovetzky and Geffner 2017 for      (s) = id(s)

Katz et al. 2017 for      (s) = id(s)

Dillon Z. Chen: Symmetry-Invariant Novelty Heuristics via Unsupervised Weisfeiler-Leman Features



1. Graph representations of planning tasks

2. Embeddings of planning tasks and graphs

3. Serialisation of models

WLPlan

https://github.com/dillonzchen/wlplan

https://github.com/dillonzchen/wlplan


Implementing a L4P Pipeline from Scratch

1. Parsing training data

2. Manipulating training data

3. Building a model

4. Training a model

5. Evaluating a model https://github.com/l4p-tutorial/heuristic-learning

https://github.com/l4p-tutorial/heuristic-learning

